穿越:2014_第239章 要现金还是股票? 首页

字体:      护眼 关灯

上一页 目录 下一章

本站域名并非永久域名!随时会关闭!请到→→→点击这里

   第239章 要现金还是股票? (第2/2页)

并没有伊芙·卡莉期许地那么强,但至少也在进步。

    甚至有些进步相对于这个时空的科研现状来说很多是从0到1的。

    至于伊芙·卡莉关于人工智能在社会层面的担忧。

    这个很多大牛确实都表示过这方面的忧虑。

    斯蒂芬·霍金、比尔·盖茨、马斯克都曾表示了对人工智能会具有自我觉知和意识的忧虑。

    尤其是霍金,更是夸张地认为人工智能可能是人类最大的灾难,如果管理不当,会思考的机器可能终结人类文明。

    这种担忧理论上有道理,但实际上其实很离谱。

    能够真正威胁人类文明的,肯定是强人工智能。

    强人工智能是指有自我意识、自主学习、自主决策能力的人工智能,这是人工智能发展的终极目标。

    理想很远大,可是哪有那么容易实现呢?

    反正直到林灰重生前夕,那会人们也没鼓捣出强人工智能,更不要说今生了。

    今生不要说神经网络学习算法仍然缺乏人类这样的联想、记忆、学习、推理等高级智能。

    但一定程度上,它有些接近机器学习专家佩德罗·多明戈斯所提出的“终极算法”,意思是说通过数据学得包括过去、现在以及未来的所有知识的算法,创造该算法将是科学历史上最大的进步之一。

    迄今为止,这样的算法并没有被创造出来。深度学习只是一定程度上接近终极算法的理想,但很多表现已经让人类不可理解。

    虽然深度学习很受欢迎,但是说到底深度学习主要是从大数据进行学习,就是通过很多标注的数据,使用深度学习算法学习得到一些模型。

    虽然叫着人工智能的名字。

    但是这种学习方式和人的智能是非常不一样的。

    人是从小样本进行学习。

    人对图像进行分类,只需要很少几个样本就可以做到准确分类。

    两三岁小孩,开始认识世界的时候,他如果想知道什么样的动物是狗,我们给他看几张狗的图片,并且告诉他狗有什么特征,和其他动物像猫或者羊有什么区别的话,小孩可以很快很准确的识别狗。

    但是像深度残差神经网络,一般来说一个类别大概需要上千张图片才能进行比较充分的训练,得到比较准确的结果。

    再比如汽车驾驶,一般来说,通过在驾校的培训,也就是几十个小时的学习,几百公里的练习,大多数人就可以开车上路了。

    但是像现在的无人车可能已经行驶了上百万公里,还是达不到人的全自动驾驶的水平。

    原因在于,人经过有限的训练,结合规则和知识能够应付各种复杂的路况,但是当前的AI还没有逻辑思考、联想和推理的能力,必须靠大数据来覆盖各种可能的路况,但是各种可能的路况几乎是无穷的。

    比较风靡的《神庙逃亡2》这款游戏。

    神庙逃亡(TempleRun)游戏内容和大多数跑酷游戏都非常相似,越过重重障碍和陷阱,不断向前飞奔。

    不过在神庙逃亡里玩家控制的是一个印第安纳琼斯似的人物,在热带雨林的某个古老神庙中逃出,被神庙中一群猴子模样的恶魔守卫追赶。人物是自动不断向前飞奔的,而玩家则需要控制他避开逃亡路上遇到的各种危险。不过和大多数跑酷游戏不同的是,游戏并未采用常见的2D横版画面,取而代之的是全3D的第三人称视角。

    可以说是一路上各种危险,但反而让人更加专注于跑酷本身。

    随着一项项能力的提升,林灰现在对人的理解也很深。

    人的智能包含了很多方面,最基本的阶段是认知性智能,也就是对整个世界的认知。

    尽管现在对于图象识别、语音识别,AI已经差不多能达到人类的水平,当然可能是在某些特定的约束条件下,能够达到人类的水平。猪熊的穿越:2014



请记住本站永久域名

地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com

加入书签 我的书架

上一页 目录 下一章